193 research outputs found

    Special Properties of Generalized Power Series

    Get PDF
    AbstractThis is a sequel to my previous papers on generalized power series. For the convenience of the reader I gather in the first section the definitions and results which shall be required. Any missing proof is either very easy or is already in one of the above quoted papers. After the preliminaries, I characterize (under suitable conditions) the generalized pow er series which are powers: the essential idea is to extend the validity of the usual binomial series. A short section gives conditions for a ring of generalized pou er series to be a real ring. As known the ring of usual power series with coefficients in a field, in any number of indeterminates, is a unique factorization domain. I show that the result holds for generalized power series with exponents in a free-ordered monoid which is noetherian and narrow. This leads to interesting examples of unique factorization domains. Completely integrally closed domains of generalized power series are also characterized in terms of their ring of coefficients and monoid of exponents. The final section is devoted to seminormal domains. The main results about usual power series are extended to generalized power series

    All functions g:N-->N which have a single-fold Diophantine representation are dominated by a limit-computable function f:N\{0}-->N which is implemented in MuPAD and whose computability is an open problem

    Full text link
    Let E_n={x_k=1, x_i+x_j=x_k, x_i \cdot x_j=x_k: i,j,k \in {1,...,n}}. For any integer n \geq 2214, we define a system T \subseteq E_n which has a unique integer solution (a_1,...,a_n). We prove that the numbers a_1,...,a_n are positive and max(a_1,...,a_n)>2^(2^n). For a positive integer n, let f(n) denote the smallest non-negative integer b such that for each system S \subseteq E_n with a unique solution in non-negative integers x_1,...,x_n, this solution belongs to [0,b]^n. We prove that if a function g:N-->N has a single-fold Diophantine representation, then f dominates g. We present a MuPAD code which takes as input a positive integer n, performs an infinite loop, returns a non-negative integer on each iteration, and returns f(n) on each sufficiently high iteration.Comment: 17 pages, Theorem 3 added. arXiv admin note: substantial text overlap with arXiv:1309.2605. text overlap with arXiv:1404.5975, arXiv:1310.536

    Phase transition in a stochastic prime number generator

    Full text link
    We introduce a stochastic algorithm that acts as a prime number generator. The dynamics of such algorithm gives rise to a continuous phase transition which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing down phenomenon is also outlined.Comment: accepted in PRE (Rapid Comm.

    The Łojasiewicz exponent over a field of arbitrary characteristic

    Get PDF
    Let K be an algebraically closed field and let K((XQ)) denote the field of generalized series with coefficients in K. We propose definitions of the local Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as well as of the Łojasiewicz exponent at infinity of F = ( f1, . . . , fm) ∈ K[X, Y ]m, which generalize the familiar case of K = C and F ∈ C{X, Y }m (resp. F ∈ C[X, Y ]m), see Cha˛dzy´nski and Krasi´nski (In: Singularities, 1988; In: Singularities, 1988; Ann Polon Math 67(3):297–301, 1997; Ann Polon Math 67(2):191–197, 1997), and prove some basic properties of such numbers. Namely, we show that in both cases the exponent is attained on a parametrization of a component of F (Theorems 6 and 7), thus being a rational number. To this end, we define the notion of the Łojasiewicz pseudoexponent of F ∈ (K((XQ))[Y ])m for which we give a description of all the generalized series that extract the pseudoexponent, in terms of their jets. In particular, we show that there exist only finitely many jets of generalized series giving the pseudoexponent of F (Theorem 5). The main tool in the proofs is the algebraic version of Newton’s Polygon Method. The results are illustrated with some explicit examples

    Quantum Probabilistic Subroutines and Problems in Number Theory

    Full text link
    We present a quantum version of the classical probabilistic algorithms aˋ\grave{a} la Rabin. The quantum algorithm is based on the essential use of Grover's operator for the quantum search of a database and of Shor's Fourier transform for extracting the periodicity of a function, and their combined use in the counting algorithm originally introduced by Brassard et al. One of the main features of our quantum probabilistic algorithm is its full unitarity and reversibility, which would make its use possible as part of larger and more complicated networks in quantum computers. As an example of this we describe polynomial time algorithms for studying some important problems in number theory, such as the test of the primality of an integer, the so called 'prime number theorem' and Hardy and Littlewood's conjecture about the asymptotic number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA: improvement in use of memory space for quantum primality test algorithm further clarified and typos in the notation correcte

    On rr-Simple kk-Path

    Full text link
    An rr-simple kk-path is a {path} in the graph of length kk that passes through each vertex at most rr times. The rr-SIMPLE kk-PATH problem, given a graph GG as input, asks whether there exists an rr-simple kk-path in GG. We first show that this problem is NP-Complete. We then show that there is a graph GG that contains an rr-simple kk-path and no simple path of length greater than 4logk/logr4\log k/\log r. So this, in a sense, motivates this problem especially when one's goal is to find a short path that visits many vertices in the graph while bounding the number of visits at each vertex. We then give a randomized algorithm that runs in time poly(n)2O(klogr/r)\mathrm{poly}(n)\cdot 2^{O( k\cdot \log r/r)} that solves the rr-SIMPLE kk-PATH on a graph with nn vertices with one-sided error. We also show that a randomized algorithm with running time poly(n)2(c/2)k/r\mathrm{poly}(n)\cdot 2^{(c/2)k/ r} with c<1c<1 gives a randomized algorithm with running time \poly(n)\cdot 2^{cn} for the Hamiltonian path problem in a directed graph - an outstanding open problem. So in a sense our algorithm is optimal up to an O(logr)O(\log r) factor

    Physics of the Riemann Hypothesis

    Full text link
    Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number theoretical function, the Riemann zeta function and examine its influence in the realm of physics and also how physics may be suggestive for the resolution of one of mathematics' most famous unconfirmed conjectures, the Riemann Hypothesis. Does physics hold an essential key to the solution for this more than hundred-year-old problem? In this work we examine numerous models from different branches of physics, from classical mechanics to statistical physics, where this function plays an integral role. We also see how this function is related to quantum chaos and how its pole-structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations we highlight how physics can perhaps shed light on the Riemann Hypothesis. Naturally, our aim could not be to be comprehensive, rather we focus on the major models and aim to give an informed starting point for the interested Reader.Comment: 27 pages, 9 figure

    Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms

    Full text link
    We develop a theory of Tannakian Galois groups for t-motives and relate this to the theory of Frobenius semilinear difference equations. We show that the transcendence degree of the period matrix associated to a given t-motive is equal to the dimension of its Galois group. Using this result we prove that Carlitz logarithms of algebraic functions that are linearly independent over the rational function field are algebraically independent.Comment: 39 page
    corecore